Data Science

Data Science Training

Data Science is an interdisciplinary domain that uses various Machine Learning principles, algorithms, tools, processes, & scientific methods to extract useful information from structured & unstructured data. It helps companies to make better decisions & improve business operations. For this reason, Data scientists & data analysts need to be competent in using different techniques to establish solutions from massive datasets. If you want to launch your career in this lucrative field, reach out to SynergisticIT, one of the well-recognized Data Science Bootcamps.

Our Data Science and Data Analyst course let you master some top-level skills, such as data visualization, Machine Learning algorithms, data manipulation, predictive modelling, web scraping, and more. The training we provide, offers a comprehensive learning experience to candidates and enables them to gain hands-on expertise in data science and data analytics.

Top Reasons to enroll in a Data Science Course

Enrolling in a Data Science Bootcamp allows you to gain in-demand skills & helps to enrich your knowledge base. Here are some reasons to pursue Data Science training:

  • As per Glassdoor, the data scientist is the number one job in the United States for the last four years. IBM has also declared it as the most trending job of the 21st century.

  • Having been able to associate yourself with the top leading industry will help you sustain in the tech market for a longer-run. So, you should sign up in a Data Science course to become industry-qualified.

  • Reportedly, the U.S. Bureau of Labour Statistics claims that the demand for data science expertise will likely to draw a rapid increase in employment by 27.9% in 2026. Hence, it is prudent to learn the core concepts of data science and data analyst to future-proof your career.

  • Learning the best practices of Data Science will also facilitate you to work in different industries such as IT, Education, Finance, Healthcare, Entertainment, Marketing, Transportation, Legal, Retail, etc.

  • Data Science training also accelerates your chances of getting hired in the world’s leading companies like Google, Accenture, Facebook, Amazon, Apple, Microsoft, Intel, PayPal, Twitter, and others.

Experience top-notch Data Science training from the industry leaders and get skilled in using Data Science and Data Analyst tools and techniques. Our detailed curriculum will give a well-rounded knowledge to candidates with the practical implication of each concept taught.

Introduction to Data Science with Python

  • What is Data Science & Analytics?
  • Common Terms in Analytics
  • What is Data & its Classification?
  • Relevance in industry and need of the hour
  • Types of problems and business objectives in various industries
  • Critical success drivers
  • Overview of analytics tools & their popularity
  • Analytics Methodology & problem-solving framework
  • List of steps in Analytics projects
  • Build Resource plan for analytics project
  • Finding the most appropriate solution design for the given problem statement
  • Project plan for Analytics project & key milestones based on effort estimates
  • How leading companies are harnessing the power of analytics?
  • Why Python for data science?

Python Introduction & Data Structures

  • Python Tools & Technologies
  • Benefits of Python
  • Important packages (Pandas, NumPy, SciPy, Scikit-learn, Seaborn, Matplotlib)
  • Why Anaconda?
  • Installation of Anaconda & other Python IDE
  • Python Objects, Numbers & Booleans, Strings, Container Objects, Mutability of Objects
  • Jupyter Notebook
  • Data Structures
  • Python Practical Session / Task

Numerical Python (NumPy)

  • Data Science and Python
  • What is NumPy?
  • NumPy Operations
  • Types of Arrays
  • Basic Operations
  • Indexing & Slicing
  • Shape Manipulation
  • Broadcasting
  • NumPy Practical Session / Task

Pandas Data Analysis

  • Why Pandas?
  • Pandas Features
  • Pandas File Read & Write Support
  • Data Structures
  • Understanding Series
  • Data Frame
  • Pandas Practical Session / Task Data Standardization
  • Missing Values
  • Data Operations
  • NumPy Practical Session / Task

Matplotlib & Seaborn Data Visualization

  • What is Data Visualization?
  • Benefits & Factors of Data Visualization
  • Data Visualization Considerations & Libraries
  • Data Visualization using Matplotlib
  • Advantages of Matplotlib
  • Data Visualization using Seaborn
  • What is a Plot and its types?
  • How to Plot with (x,y)?
  • How to Control Line Patterns and Colors
  • How to Implement Multiple Plots?
  • Matplotlib Practical Session / Task

Data Manipulation: Cleansing – Munging

  • Data Manipulation steps (Sorting, filtering, merging, appending, derived variables, etc)
  • Filling the missing values by using Lambda function and Skewness.
  • Cleansing Data with Python

Data Analysis: Visualization Using Python

  • Introduction exploratory data analysis
  • Important Packages for Exploratory Analysis (NumPy Arrays, Matplotlib, seaborn, Pandas, etc)
  • Univariate Analysis (Distribution of data & Graphical Analysis)
  • Bivariate Analysis (Cross Tabs, Distributions & Relationships, Graphical Analysis)
  • Creating Graphs- Bar/pie/line chart/histogram/ boxplot/ scatter/ density etc)
  • Descriptive statistics, Frequency Tables & summarization

Introduction to Artificial Intelligence (AI) & Machine Learning (ML)

  • What is Artificial Intelligence & Machine Learning?
  • What is Big Data?
  • Understanding the difference between Artificial Intelligence, Machine Learning & Deep Learning
  • Artificial Intelligence in Real World-Applications

Machine Learning Techniques & Algorithms

  • Types of Machine Learning
  • Machine Learning Algorithms
  • Hyper parameter optimization
  • Hierarchical Clustering
  • Implementation of Linear Regression
  • Performance Measurement
  • Principal component Analysis
  • How Supervised & Unsurprised Learning Model Works?
  • Machine Learning Project Life Cycle & Implementation
  • What is Scikit Learn, Regression Analysis, Linear Regression?
  • Difference between Regression & Classification
  • What is Logistic Regression and its implementation?
  • Best Machine Learning Approach

Decision Tree and Random Forest Algorithm

  • What is a Decision Tree and how it works?
  • What is Entropy, Information Gain, Decision Node?
  • In-depth study of Random Forest and understanding how it works?

Naïve Bayes and KNN Algorithm

  • What is Naïve Bayes?
  • Advantages & Disadvantages of Naïve Bayes
  • why KNN?
  • Practical Implementation of Naïve Bayes
  • What is KNN and how does it work?
  • How do we choose K?
  • Practical Implementation of KNN Algorithm

Support Vector Machine Algorithm

  • What is Support Vector Machine (SVM)?
  • How Does SVM Work?
  • Applications of SVM
  • Why SVM?
  • Practical Implementation of SVM

Model Deployment & Tableau

  • Flask Introduction & Application
  • Django end to end
  • Working with Tableau
  • Data organisation
  • Creation of parameters
  • Advanced visualization
  • Dashboard data presentation

Introduction to Statistics

  • Descriptive Statistics
  • Sample vs Population Statistics
  • Random variables
  • Probability distribution functions
  • Expected value
  • Normal distribution
  • Gaussian distribution
  • Z-score
  • Central limit theorem
  • Spread and Dispersion
  • Hypothesis Testing
  • Z-stats vs T-stats
  • Type 1 & Type 2 error
  • Confidence Interval
  • ANOVA Test
  • Chi Square Test
  • T-test 1-Tail 2-Tail Test
  • Correlation and Co-variance

Introduction to Predictive Modelling

  • The concept of model in analytics and how to use it?
  • Different Phases of Predictive Modelling
  • Popular Modelling algorithms
  • Different kinds of Business problems - Mapping of Techniques
  • Common terminology used in Modelling & Analytics process

Data Exploration for Modelling

  • Visualize the data trends and patterns
  • Identify missing data & outliers’ data
  • EDA framework for exploring the data & identifying problems with the data by the help of pair plot.
  • What is the need for structured exploratory data?

Data Preparation

  • Merging
  • Normalizing the data
  • Feature Engineering
  • What is the need for Data preparation?
  • Aggregation/ Consolidation - Outlier treatment - Flat Liners - Missing Values-Dummy creation - Variable Reduction
  • Variable Reduction Techniques - Factor & PCA Analysis
  • Feature Selection
  • Feature scaling using Standard Scaler
  • Label encoding

Ensemble Learning Techniques

  • In-depth study of Ensemble Learning with Real Examples
  • How to Reduce Model Errors with Ensembles
  • Understanding Bias and Variance
  • Different Types of Ensemble Learning Methods
  • Feature Selection
  • Feature scaling using Standard Scaler
  • Label encoding

Web Scraping using Python Beautiful Soup

  • What is Web Scraping & Why Web Scraping?
  • Web Scraping using Beautiful Soup Practical Session / Task
  • Difference Between Web Scraping Software Vs. Web Browser
  • Web Scraping using Beautiful Soup Practical Session / Task
  • Web Scraping Considerations & Tools
  • Why Beautiful Soup?
  • Common Data & Page Formats on the Web
  • Practical Implementation of Web Scraping
  • Web Scraping Process
  • What is a Parser?
  • Importance of Parsing
  • What are the various Parsers?
  • How to Navigate the Parsers?
  • How to take Output – Printing & Formatting

Time Series Analysis

  • Why Time Series Analysis?
  • What is Time Series?
  • Time Series Components (Seasonality, Trend, Level & Cyclicity) and Decomposition
  • Classification of Techniques like Pattern based or Pattern less
  • Basic to Advance level Techniques (Averages, AR Models, Smoothening, ARIMA, etc)
  • Use Cases of Time Series Analysis
  • When Not to Use Time Series Analysis?
  • Understanding Forecasting Accuracy - MAPE, MAD, MSE, etc
  • Time Series Analysis Case Study - Practical Session / Task

Deep Learning

  • What is deep learning
  • The neuron
  • How do neural networks work?
  • Back propagation
  • ANN in Python
  • What are convolutional neural networks?
  • Installing Tensor Flow & Keras
  • CNN in Python
  • Activation function & Epoch

Natural Language Processing (NLP) & Text Mining

  • What is Natural Language Processing (NLP) & Why NLP?
  • NLP with Python
  • Sentiment analysis
  • Bags of words
  • Stemming
  • Tokenization
  • What is Text Mining?
  • Text Mining & NLP
  • Benefits, Components, Applications of NLP
  • NLP Terminologies & Major Libraries
  • NLP Approach for Text Data
  • What is Sentiment Analysis?
  • Steps for Sentiment Analysis
  • Sentiment Analysis Case Study - Practical Session / Task
  • Practical Implementation of NLP
  • NLP Case Study - Practical Session / Task

Market Basket Analysis

  • What is Market Basket Analysis & how it is used?
  • What is Association Rule Mining?
  • What is Support, Confidence & Lift
  • An Example of Association Rules
  • Market Basket Analysis Case Study - Practical Session / Task

Career Options after Data Science Training

There are various lucrative career opportunities that you can explore in Data Science after acquiring the necessary skills & knowledge. Have a look at some of the top-paying job options in Data Science:

Start acquiring valuable Data Science and Data Analyst skills by training at the best Data Science Bootcamp. Create a robust work portfolio to demonstrate your abilities in the field with the assistance of experienced mentors. Let’s help you achieve your career goals. SynergisticIT- The best programmer in the Bay Area…Period!